", /AJ"/?‘ZC;;/

NASA Technical Memorandum 87675

{NASA-TE-BT675) TIXME~-DEPENDENT SCLUTION FOR N87-12806

AXISYMMETRIC FLCW CVEER A ELUNT ECDY WITH

ILEAL GAS, CF4, OF EQUILIBRIUK AIR CHEMISTRY

{KASA) 40 p _ CSCL 20D Unclas
G3/34 44000

TIME-DEPENDENT SOLUTION FOR AXISYMMETRIC
FLOW OVER A BLUNT BODY WITH IDEAL GAS, CF,,
OR EQUILIBRIUM AIR CHEMISTRY

H. Harris Hamilton Il and

John R. Spall

July 1986

NASA

National Aeronautics and
Space Administration

Langiey Research Center
Hampton, Virginia 23665



TIME-DEPENDENT SOLUTION FOR AXISYMMETRIC
FLOW OVER A BLUNT BODY WITH IDEAL GAS, CF

OR EQUILIBRIUM AIR CHEMISTRY

ul

H. Harris Hamilton I1I
and

John R. Spall

INTRODUCTION

Over the past three decades, much effort has been devoted to solving the

invisecid flow over blunt bodies. Two basic approaches have been used: (1)
an inverse approach -~ where the shock wave is given and the body shape and
details of the flow within the shock layer are unknown and (2) a direct

approach - where the body shape is given and all details of the flow within
the shock layer are unknown. (See ref. 1.)

J
For the inverse problem, the steady flow equations are usually solved by

marching inward from the shock wave to obtain the solution for the body.
(See refs. 2 to 5.) Since the steady flow equations are of a mixed
elliptic-hyperbolic type, this initial value problem is ill posed and is
inherently unstable. However, for some cases good results can be obtained
by this approach before the instabilities destroy the solution (refs. 1 and
2). The inverse problem can be made direct by iteration. However,
improvements to a solution which gives an approximation to a desired body
shape is not always apparent {(ref.1), and thus solutions for complex body
shapes are usually difficult to obtain.

More recently, time-dependent, finite-difference techniques have been
used with great success to solve the more difficult direct problem. (See
refs. 6 to 11). This technique takes advantage of the hyperbolic nature of
the unsteady flow equations by marching in time from an approximate initial
condition to the desired steady-state solution. This problem is well posed
and thus eliminates the instabilities that were mentioned earlier for the
inverse problem. This technique has been used successfully to compute the
flow over very complex geometries.

The purpose of the present paper is to describe such a time-dependent,
finite-difference computer code, developed by the senior author, which has

heaon nsed successfully fAan the past sever
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everal years Lo analyze inviscid flow
fields over axisymmetric bodies at zero degrees angle of attack. The code
has the capability of calculating the flow of an ideal gas, CFu, or air in

chemical equilibrium and can be applied to reasonably general axisymmetric
body shapes. The present paper gives a detailed description of the method




of solution and presents some comparisons of calculated results with
experimental data.

SYMBOLS
a speed of sound, 5/\—1°°
Bb body bluntness parameter
cp specific heat at constant pressure
cV specific neat at constant volume
g,8, parameters defined by equations (16)
=, =2
H total enthalpy, H/V°°
. -, =2
h static enthalpy, h/V°°
J indicator, j=0 for 2-D flow, j=1 for axisymmetric flow
M Mach number
-,= =2
P pressure, p/p V_
r,é polar coordinates {(See fig. 1.)
R gas constant for CFM’ 94.475 J/kg-K
ﬁb radius of curvature of nose, m
t time, wa/ﬁb
t dimensional time, sec
v, free-stream velocity, VQ/Vm= 1
Qw dimensional free-stream velocity, m/sec




(v ) velocity component normal to shock wave, (;n)s/\-Im

vr,v¢ velocity components in polar coordinate system (see fig. 1),
v./V_ and v /V
r @® ¢ @®
X,Y Cartesian coordinates (see fig. 3), ;/ﬁb’ §/§b
xp location of pole of coordinate system (see fig. 3), ;p/ﬁb
Bs shock wave angle
§ normal distance between body and shock, m
Y ratio of specific heats, Ep/av
Ar local shock layer thickness in radial direction (eq.(12¢))
An step size in n-direction
Ag .step size in g-direction
> artificial viscosity
Cb angle between tangent to body and line r = Constant
cs angle between tangent to shock and line r = Constant
“r’“¢ derivative of n with respect to r and ¢ (eqs.(12a) and (12d))
£,M transformed coordinates defined by equations (9) and (10)
Er’£¢ derivatives of £ with respect to r and ¢ (egs. (12b) and (12e))
p density, 5/5@
Superscripts:
() dimensional quantity
() predicted quantity
Subscripts:
b body



3 shock

W wall
o free stream
max maximum

METHOD

This section presents a description of the time-dependent, finite-
difference technique used to solve the inviscid two-dimensional or
axisymmetric flow over a blunt-nosed body such as that shown in figure 1.
The domain of the solution includes the entire subsonic portion of the flow
field with the downstream outflow boundary located in a region where the
flow is completely supersonic.

Flow-Field Equations
The partial differential equations governing the two-dimensional or

axisymmetric flow of an inviscid, nonconducting fluid in polar coordinates
(fig. 1) are

v ov . :
Dp . _r .1 _¢, 30 . cotd
Dt p(ar e 9¢ MRS Vr) (1
2
Dv v
_r_ % , 19 _
t r " p oar 0 (2)
Dv vV Vv
J*.M.{.LQE,_O (3)
Dt r re 9¢
where
v
D _ 3 ,, &, 0%
Dt ot r ar r J¢

denotes the substantial derivative and j=0 for two-dimensional flow and j=1
for axisymmetric flow.

Since entropy is constant along streamlines, the following relation can
be written between pressure and density:




Dp _ ,2 Dp (
pt = 2 pt (h)

which can be used in the continuity equation (1) to replace the density
derivative to obtain the following equation:

av v
Dp 2 _r 1 ¢ . 3+ . cot
pt @ p(Br' e 3¢ A Vp T r v¢) (5)

Now equations (2), (3), and (5) contain derivatives of p, Vi and v¢ only

and are in a convenient form to solve for these variables. One other
equation is needed to solve for a second thermodynamic variable. Since our
interest is only in the steady flow solution, the integrated form of the
energy equation is used

H=h+ ——20 (6)

Although this will cause the time-varying solution to be inconsistent, it
will yield consistent and accurate steady-state results. Now equations (2),

(3), (5), and (6) contain six dependent variables (p, p, a, Vs Voo and h).

To solve for these variables, two additional equations are needed. These
can be obtained from the thermodynamic equation of state in the following
functional form:

p(p,h) (7)

©
]

a(p,h) (8)

'8
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The method of computing these properties for different gases will be
discussed in the section on thermodynamic properties.

Computational Domain

To make integration of this system of partial differential equations easier
and to help with the application of boundary conditicns, the region (fig. 1)

bounded by the stagnation streamline, the bow shock wave, a line ¢ = ¢max

(located in the supersonic flow region), and the body surface is mapped into
a rectangular domain (fig. 2) using the transformation equations




R 2 ) (9)

max

r - rb(¢)
rs(¢) - rb(¢)

(10)

From these transformation equations, a set of transformation operators can
be defined as

3 _ a_ 3
ar ~ "r 3n " 3E (112)
9 ] 9
9. _ o a 11b
30 = "o an %o 3t (11e)
where
no= - (12a)
r Ar
£.=0 (12b)
Ar = rs(¢) - rb(¢) (12¢)
dr
1, b d(Ar)
% = ar (d¢ 55——-) (12d)
_d L
£o= - {(12e)
¢ do ¢max

which will transform the governing partial differential equations (2), (3)
and (5) into the following system

9p _ -g 9P _ g op _ a2p (l. iif .+ 1 (€ 319 + 1 ?ZQ)
at an 13& Ar 9n r ¢ dF ¢ 9n
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g =t v¢ (r ) (16a)
£
- ]
g, v¢ (r ) (16b)

Numerical Procedure

Interior grid points.- At all interior grid points, the governing
differential equations (eqs. (13) to (15)) are integrated in time, using the
Brailovskaya difference scheme (ref. 12). This same technique has been used
by Barnwell (ref. 9) for invisicd flow calculations and Carter (ref. 13) for
viscous flow calculations. It is an explicit, predictor-corrector technique
which uses forward time and centered spatial derivatives.

When it is applied to a general partial differential equation of the
form

af of _ .
S rrs =0 (17a)

it yields the following result:

Predictor step:

n+1 n_ At n..n _ .n
i fi 2Ax fi (fi+1 fi—1) (170)



Corrector step:

n+1 n_ At wn Zn-1 _ Zn+l
By =8~ oax B Fieg 7 Tiag) (17¢)

where n indicates the time step and i indicates the spatial grid point.

Differencing at the boundaries.- At the shock, body surface, and outflow
boundaries, three-point, one-sided differences are used for the spatial
derivatives in a direction normal to the boundary (see fig. 2) in both the
predictor and corrector steps. Thus, the same order accuracy is maintained
at the boundaries as at the interior points. Symmetry conditions are
applied along the stagnation streamline.

Shock-wave solution.- A method similar to that used by Hamilton and
Graves (ref. 10) has been used to track the movement of the shock wave
during the transient portion of the solution. The method can be summarized
as follows. (Details are given in the appendix.) First, the pressure is
computed on the downstream of the shock wave by using the two-step
difference scheme described previously. With the pressure at the shock wave
pS known, the density is computed for an ideal gas from the equation

= - - > (18)
Y-1 2

—_—) (19)

where Vo and (Vn)w are defined in the sketches in the appendix. Nex%t, the
movement of the shock wave is computed from the following differential
equation:

drs

—_— L - 20

rrS Vs/cos;s (20)

where




£
(;i =2 (21)

by using the following two-step finite difference approximation:

Predictor step:

o t+At t t
(rs) =rg+ At(vs/cos;s) (22)
Corrector step:
t+At t oo tHAt

(rs) rg + O.SAt((Vs/cos;S)t + (Gs/coscs) ) (23)

For CFu and equilibrium air chemistry, the Y used in equation (18) is
replaced by Yp. (See section on Thermodynamics.) Thus, for these cases the

method of tracking the transient shock wave is approximate during the early
part of the solution, but becomes more exact as the steady state is
approached.

Derivatives along the shock, drs/dg, are calculated using a noncentered

four-point formula of the form

drs
(=), = =— (r - 6rs + 3r o+ 2rs ) (24)

1
ag "1 6AE s, 1-1 Sy 1+1

where 1 indicates the grid point location. Numerical experimentation has
shown that this form of the shock derivative produces a much smoother
converged shock than centered differences.

Wall boundary conditions.- For inviscid flow, the velocity must be
tangent to the wall (i.e. the normal component of velocity must be zero).
This requires that the following equation be satisfied

(Vr)w = (v¢)w(tancb) (25)

where



ar E.  or
- -t by 1,29 _ b
g, = tan (rb 30 ) tan (r ) (26)

The wall boundary condition is applied using the following procedure:

1. The pressure at the wall (pw) is first determined by integrating

equation (13).

2. The "estimated" values for the wall velocity components,
* *
(vr)w and (v¢)w, are obtained by integrating equations (14)

and (15), respectively.

3. The "final"” value for the ¢-component of velocity at the wall,
(V¢)w’ is obtained by combining equation (25) with the

expression for total velocity to obtain:

x 2

*
(v = (WL (v)2)/ (1 + rane )2 (1)

4. The "final" value for the r-component of velocity at the wall,
(vr)w’ is then calculated from equation (25).

5. Using these values of velocity, the wall enthalpy, hw , is

calculated from equation (6).

This procedure is applied at the wall in both the predictor and corrector
steps of the integration process.

Smoothing function.- Numerical experimentation has shown that the
present solution converges much more rapidly and is less likely to diverge
for a given set of initial conditions if a small amount of explicit
numerical smoothing is applied during the integration. In the present
program, the fourth-order smoother of Barnwell (ref. 9) has been used. The
smoothing 1s applied to the dependent variables (p, Vs and v, ) in equations

¢
(13) through (15) during the the corrector step. Small values of the

smoothing coefficient of the order of 0.02 are typically used in the results
presented in the present paper and have been found adequate to damp out
unwanted oscillations without distorting the computed flow field.

Stability.- The flow-field equations are integrated in the present
method using the maximun allowable "local" time step at each grid point.
This has been found to produce almost identical results as solutions
obtained using the minimum "global" time step, but the speed of convergence
is "approximately" doubled. To estimate the maximum allowable local time
step the following approximate CFL relation is used
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m

in
At = (28)
Vel ¢ vyl v a Gr e
r ¢ Ar ri¢

where (As)min is the minimum local grid spacing. In actual applications,

approximately 50 to 80 percent of the time step calculated from the above
equation is used in the integration at each grid point.

Thermodynamics

To compute an actual flow field, density (p) and speed of sound (a) must
be determined as a function of pressure and enthalpy (p and h). This is
expressed in functional form by equations (7) and (8). For an ideal gas,
these expressions are simply

_ Y P
p = (Y —= 1) h (29a)
2
a” = (Y - 1)h (29p)

Such simple closed form expressions are not possible for CFu. For this

case, the expressions given by Sutton (ref. 14) have been used to obtain a
curve fit of

=1
[
31
~
oy
~

over range of temperatures from 100° to 1000° Kelvin. Thus, once h has been

computed, T can be determined from the above curve fit, and 5 can be
computed from the thermally perfect equation of state:

o

p = oRT (30)

where R is the gas constant for CFu (94.465 J/kg-K). The speed of sound (a)

can then be determined from the expressions given by Sutton in (ref. 14).

For air in chemical equilibrium, simple closed form expressions for p

and a2 are also impossible to obtain. For this case, Kenneth Sutton has
developed a set of thermodynamic subroutines based on the approximate
approach of Hanson (ref., 15) which yield all of the desired thermodynamic
properties for air at high temperatures as a function of pressure and

1"




temperature. To use these subroutines in the present program, an iterative
scheme was developed to enable all of the desired thermodynamic properties
to be determined as a function of pressure and enthalpy.

However, for both CFM and equilibrium air, the computational time is

greatly increased above that required for an ideal gas if the thermodynamic
routines are called for each time step. Thus a relatively simple procedure
has been used which requires calling the thermodynamic subroutines only one
time each 25 to 50 time steps. This procedure requires calling the
thermodynamic subroutines at the first time step and evaluating the values
of Yp and Ya at each grid point which satisfy the equations:

y
= (—LB—)B
p = (—2)k (31)
Y
2
a = (Ya - )h (32)

These values of Yp and Ya are stored and used in successive time steps to

calculate the required values of p and a2 for each integration step. Since

the flow-field quanities change slowly, these approximate values of p and a2
are sufficiently accurate to proceed with the solution. At regular

intervals, the thermodynamic subroutines are called to up date the values of
Yp and Ya. As the result of several tests, using this procedure requires an

update to the thermodynamics every 50 iterations. This reduces much of the
computational overhead so that these types of solutions require only 15 to
20 percent more time than an ideal gas solution.

Body Geometry

The forward portion of the body geometries considered in the present

paper have a proj
for a general con

ection in the X,y plane that is described by the equation
ic section:

y~ = 2R X - B X (33)

where ﬁb is the radius of curvature at the stagnation point (where x = 0)
and Bb is a bluntness parameter. The bluntness parameter Bb
characterizes the eccentricity of the conic section. Its significance is

12




better understood if it i3 noted that B _< 0 generates a hyperbola, B, = 0

b b
generates a parabola, and Bb > 0 generates an ellipse (with Bb = 1 for the
special case of a circle). For an ellipse, Bb is related to the ratio of

the major to minor axes (b/a) by the equation

2
Bb = (b/a) (34)

Some of the body shapes considered in the present paper were blunted cones.
These shapes can be generated by using equation (33) to describe the nose
followed by a straight line segment to describe the remaining downstream
segment of the body.

RESULTS AND DISCUSSION

In this section, results of the present method are compared with
experimental data and the results of other numerical techniques. Two gases
are considered: air with either ideal gas and equilibrium chemistry, and
CFH' Flow over a sphere, a paraboloid, and two different ellipsoids is

considered for the ideal gas cases; flow over a sphere-cone for the
equilibrium air case; and flow over a sphere for the CFu case. For all

cases, 41 points are used around the body and 21 points are used between the
body and shock.

Air

Surface pressure distributions on a sphere in air for Mach numbers of
2.0, 4.0, and 8.06 and Y = 1.4 are given in figure 4. To maintain a

supersonic outflow boundary condition, ¢ max "as set equal to 45 degrees for

the two higher Mach number cases and 55 degrees for the Mach 2 case.
Agreement between the present method and the data of references 2, 5, and 16
is excellent. Shock-layer thicknesses for each Mach number are given in
figure 5. Again, there is excellent agreement between the present method
and the numerical and experimental data at the higher Mach numbers.

However, at a Mach number of 2.0, there is a maximum difference between the
present method and the experimental data of reference 16 of 6 percent. As
noted in reference 5, the shock-layer thickness changes rapidly at low Mach
numbers; and thus, a small error in the test Mach number could be enough to
cause this difference in results.

Pressure distributions on a paraboloid for Mach numbers of 3 and 10 and
Y = 1.4 are given in figure 6. The data of the present method are in very
good agreement with the numerical results of references 2 and 5 for both
Mach numbers. Shock-layer thicknesses are compared in figure 7, and again,
agreement is very good.

13



Surface pressure distributions for ellipsoids with b/a = 0.5 and 1.5 are
given in figures 8 and 9 for Y = 1.4 and Mach numbers of 4.0 and 8.06.
Agreement between the present method and the data of references 5 and 16 is
excellent. Shock-layer thicknesses for the case where b/a = 1.5 are given
in figure 10. Agreement is very good for both Mach numbers.

In figures 11 and 12, surface pressure distributions and shock-layer
thicknesses are given for flow over a spherically blunted cone, where
equilibrium air chemistry is used. Comparisons are made with the
computational data of references 17 and 18. Agreement is generally very
good except for the shock-layer thickness for values of s/Rb> 2.5, where the

present method produces results that are slightly higher than the other data
shown.

CFM

The surface pressure distribution on a sphere in CE‘u is given in figure

13. The computer code described in reference 17 was used to generate the
data for comparison. The agreement is excellent. The computed shock
standoff distance around the body is shown in figure 14 along with data
generated by the code of reference 17. Again, the agreement is excellent.

CONCLUDING REMARKS

A time—asymptotic method has been used to obtain steady-flow solutions
for axisymmetric, inviscid flow over several blunt bodies including spheres,
paraboloids, ellipsoids, and spherically blunted cones. Comparisons with
experimental data and results of other computational methods have
demonstrated that accurate solutions can be obtained using this approach.
The method should prove useful as an analysis tool for comparing with

experimental data and for making engineering calculations for blunt reentry
vehicles.
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APPENDIX

CALCULATION OF PROPERTIES AT SHOCK WAVE

A method similar to that presented in reference 10 has been used to
calculate the shock velocity and other thermodynamic properties at the shock
wave from the pressure. - Consider the shock wave illustrated in the sketch
(a) which can be expressed as a function of ¢, r- rs(¢)

Sketch (a)

The shock-wave angle Bs is given by the equation

i
Bs -3 - ¢ + tg (A1)
where
ar E, or
- -1 sy . “1/2¢ _s
g = tan (r,s oY) ) = tan (PS 5E ) (A2)

and the components of free-stream velocity tangent and normal to the shock
wave are given, respectively, by the equations

(Vi) = V,cosB (A3)
(Vn)c - Vmsines (AY)
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Changes in properties across the shock wave can be related to the

normal component of free-stream velocity and the shock velocity, as
illustrated in sketch (b).

";”’,,—4 Shock wave

— Vs ’

(V) V)e

- -
Peo Ps
Poo . pS

|

h_ h_ |

Sketch (b)

Conditions across the shock can be related by the following normal shock-
wave equation (since p_ = 1):

(V) = V= p LV ) = V.] (A5)

Py * LV ), = V]2 =p_ + [(V) -V] (A6)
Lv ), - v 12 [(v), -v_1?

h, + — 53— = n_+ —2—2 (A7)

Now rearranging equation (A6), the following expression can be obtained:

Cv )y - v 12
Pg = P = LV ) =V I2 {1 -0 } (a8)
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Combining this equation with equation (A5) and solving for [(Vn)m - Vsjz,

the following result is obtained

r 2 ps—p“’
L(Vn)°° - Vs)] = - T (A9)
Ps
Similarly, equation (A6) becomes
leevy - 2 1.+
hs h, + 2[(Vn)°° Vs] [ o ] (a10)

s

Equations (A9) and (A10) can be combined with the ideal-gas equation of
Y -1

state p = p( )h  to yield the following result:

1

h, + 5(p, - p.)

- - 2 51 (A11)
Ps{y =) ~ 3(Pg ~ P,

L
pS

Using this result, equation (A9) can be solved for the shock velocity Vs

P
Vo= (V) - o

ni

S ) (A12)

1 -

A=l Bl !
w 7| o
8

Using equation (A4), (Vn)S is obtained

Vg =

o ‘-a

s[(v“)° AR (A13)

Thus the components of velocity downstream of the shock wave are simply

(vr)s = -(Vn)s cosg  + V_ cosB_ sing (A1Y)

17




(v¢)s = (Vn)s sinz;s + Vv cosgs Sincs (A15)

For CFu or equilibrium air chemistry, the Y appearing in equation

(A11) 1is replaced by Yp. This allows the same shock wave routines to be
used for these gases as for an ideal gas. Although this approach is
inconsistent in the transient sense, it becomes more and more exact as the

steady-state solution is approached. It also reduces the amount of work
required to obtain converged solutions for these cases.
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Figure 4. - Pressure distribution on a sphere in air,
Ideal gas with y =1.4.
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Figure 4. - Concluded.
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Figure 5. - Shock-layer thicknesses for a sphere in air,
Ideal gas with y =1.4.
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Figure 6. - Concluded.
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Figure 7. - Shock-layer thicknesses for a paraboloid in air.
Ideal gas with y =1.4.

29




Q Present method

—O-Ref. 5
2 [J Ref. 16
0 L L ! R [
0 2 4 6 8 10 12 14 16
<
(a) Mm=4'

Figure 8. - Pressure distribution on an ellipsoid in air.
Ideal gas with y =1.4 and b/a=0.5,
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Figure 8. - Concluded.
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Figure 9. - Pressure distribution on an ellipsoid in air.
Ideal gas with y =1.4. and b/a=1.5.
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Figure 9. - Concluded.
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Figure 10. - Shock-layer thicknesses for an ellipsoid in air.
Ideal gas with y =1.4 and b/a=1.5.
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Figure 11. - Pressure distribution on a 40° sphere-cone in air
with equilibrium chemistry. '
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Figure 12, - Shock stand-off distance for a 40° sphere-cone in air
with equilibrium chemistry.
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Figure 13. - Pressure distribution on a sphere in CFy.
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Figure 14, - Shock-ayer thicknesses for a sphere in CF
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